منابع مشابه
Rational double points on supersingular K3 surfaces
We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.
متن کاملDynkin Diagrams of Rank 20 on Supersingular K3 Surfaces
We classify normal supersingular K3 surfaces Y with total Milnor number 20 in characteristic p, where p is an odd prime that does not divide the discriminant of the Dynkin type of the rational double points on Y .
متن کاملUnirationality of Certain Supersingular K3 Surfaces in Characteristic
We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.
متن کاملSupersingular K3 Surfaces in Odd Characteristic and Sextic Double Planes
We show that every supersingular K3 surface is birational to a double cover of a projective plane.
متن کاملAutomorphisms of Supersingular K3 Surfaces and Salem Polynomials
We use the notation defined in this paper. Let X be a supersingular K3 surface in characteristic p = p with Artin invariant σ = sigma. • GramSX[p, sigma] is a Gram matrix of the lattice Λp,σ, which is isomorphic to SX . • h0[p, sigma] is a vector h0 of Λp,σ with ⟨h0, h0⟩Λ > 0. • Rh0[p, sigma] is the set R(h0). • amplelist[p, sigma] is an ample list of vectors a = [h0, ρ1, . . . , ρK ]. We ident...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 1974
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.1279