Supersingular $K3$ surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational double points on supersingular K3 surfaces

We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.

متن کامل

Dynkin Diagrams of Rank 20 on Supersingular K3 Surfaces

We classify normal supersingular K3 surfaces Y with total Milnor number 20 in characteristic p, where p is an odd prime that does not divide the discriminant of the Dynkin type of the rational double points on Y .

متن کامل

Unirationality of Certain Supersingular K3 Surfaces in Characteristic

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

متن کامل

Supersingular K3 Surfaces in Odd Characteristic and Sextic Double Planes

We show that every supersingular K3 surface is birational to a double cover of a projective plane.

متن کامل

Automorphisms of Supersingular K3 Surfaces and Salem Polynomials

We use the notation defined in this paper. Let X be a supersingular K3 surface in characteristic p = p with Artin invariant σ = sigma. • GramSX[p, sigma] is a Gram matrix of the lattice Λp,σ, which is isomorphic to SX . • h0[p, sigma] is a vector h0 of Λp,σ with ⟨h0, h0⟩Λ > 0. • Rh0[p, sigma] is the set R(h0). • amplelist[p, sigma] is an ample list of vectors a = [h0, ρ1, . . . , ρK ]. We ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales scientifiques de l'École normale supérieure

سال: 1974

ISSN: 0012-9593,1873-2151

DOI: 10.24033/asens.1279